29034 measured reflections

 $R_{\rm int}=0.079$

5488 independent reflections 3296 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-(4-Chlorophenyl)-2-(2,4-dichlorophenoxy)-5-methyl-8,9,10,11-tetrahydro-2-benzothieno[2',3':2,3]pyrido[4,5-d]pyrimidin-4(3H)-one dichloromethane solvate

lian-Chao Liu

College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China, and, Department of Journalism of Central China Normal University, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: journal@mail.ccnu.edu.cn

Received 6 October 2007; accepted 29 October 2007

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.007 Å; disorder in solvent or counterion; R factor = 0.078; wR factor = 0.234; data-toparameter ratio = 14.8.

In the structure of the title compound, C₂₆H₁₈Cl₃N₃O₂S·- CH_2Cl_2 , the C-S bond lengths in the thiophene ring [1.733 (5) and 1.735 (5) Å] are equivalent and long compared with the values observed in both free thiophene, measured using electron diffraction, and thieno[2,3-c]pyridine. The central thienopyridine ring system is planar. The pyrimidinone ring forms a dihedral angle of $3.1 (2)^{\circ}$ with the pyridine ring. The chloro- and dichlorophenyl rings form dihedral angles of 75.2 (2) and 85.5 (2) $^{\circ}$, respectively, with the pyrimidinone ring. The dihedral angle between the chlorophenyl rings is $69.7 (2)^{\circ}$. The cyclohexene ring adopts a half-chair conformation. There is a C-H-O hydrogen bond between the main molecule and the dichoromethane molecule. The dichloromethane molecule is disordered over two positions, with refined occupancies of 0.775 (6) and 0.225 (6).

Related literature

For related literature, see: Bonham & Momany (1963); Bridges et al. (1997); Ghosh & Simonsen (1993); Ismail & Wibberley (1967); Liu et al. (2006).

Experimental

Crystal data

$C_{26}H_{18}Cl_3N_3O_2S \cdot CH_2Cl_2$	V = 5578 (3) Å ³
$M_r = 627.77$	Z = 8
Orthorhombic, Pbca	Mo $K\alpha$ radiation
a = 18.295 (6) Å	$\mu = 0.63 \text{ mm}^{-1}$
b = 10.851 (4) Å	T = 292 (2) K
c = 28.097 (9) Å	$0.20 \times 0.16 \times 0.12 \text{ mm}$

Data collection

Bruker SMART APEX CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\rm min} = 0.885, T_{\rm max} = 0.929$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.078$	41 restraints
$wR(F^2) = 0.234$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.64 \text{ e } \text{\AA}^{-3}$
5488 reflections	$\Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$
372 parameters	

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D - H $H \cdots A$ $D \cdots A$ $D - H \cdot \cdot \cdot A$ $C27 - H27A \cdots O1^{i}$ 0.97 2.44 3.23 (2) 138

Symmetry code: (i) -x + 1, -y + 1, -z.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

The author thanks the National Natural Science Foundation of China (grant No. 20672041) and the Post Doctoral Science Foundation of Central South University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2481).

References

Bonham, R. A. & Momany, F. A. (1963). J. Phys. Chem. 67, 2474-2477.

- Bridges, A. J., Denny, W. A., Fry, D., Kraker, A., Meyer, R. F., Rewcastle, G. W. & Thompson, A. M. (1997). US Patent No. 5 654 307.
- Bruker (1998). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ghosh, R. & Simonsen, S. H. (1993). Acta Cryst. C49, 1031-1032.
- Ismail, A. G. & Wibberley, D. G. (1967). J. Chem. Soc. C, pp. 2613-2616. Liu, J. C., He, H. W., Ren, Q. Y. & Ding, M. W. (2006). Helv. Chim. Acta, 89, 1337-1343.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97, University of Göttingen, Germany.

Acta Cryst. (2007). E63, o4571 [doi:10.1107/S1600536807054013]

3-(4-Chlorophenyl)-2-(2,4-dichlorophenoxy)-5-methyl-8,9,10,11-tetrahydro-2benzothieno[2',3':2,3]pyrido[4,5-*d*]pyrimidin-4(3*H*)-one dichloromethane solvate

J.-C. Liu

Comment

The pyridopyrimidine scaffold is a well known pharmacophore in drug design and it is associated with a wide range of biological properties. For example, many pyrido[4,3-*d*]pyrimidines have been described as inhibitors of tyrosine kinases of the epidermal growth factor receptor family (Bridges *et al.*, 1997). An important synthetic route to pyrido[4,3-*d*]pyrimidine is the condensation reaction of 4-aminonicotinic acid and amines (Ismail & Wibberley, 1967). However, this method often require long reaction time. Recently, we have developed a new and facile regioselective annulation process, which proceeds smoothly under mild condition *via* a tandem aza-Wittig and cyclization reaction, to synthesize novel pyrido[4,3-*d*]pyrimidine derivates (Liu *et al.*, 2006). In this paper, the crystal structure of the title compound is reported. The structure of the title compound was also characterized by ¹H NMR, MS and elemental analysis.

The molecular structure of (1) is shown in Fig. 1. The C—S bond lengths in the thiophene ring [1.733 (5) and 1.735 (5) Å] are almost equal and long compared with the values observed in free thiophene (1.714 Å; Bonham & Momany, 1963). The C8—S1—C5 [91.7 (2)°] angle is comparable to that observed in free thiophene [92.2 (2)°]. The C8—N1—C9 angle of 116.9 (4)° is typical of a non-protonated ring system, being smaller than 120° (Ghosh & Simonsen, 1993). The central thienopyridine ring system is nearly planar and the dihedral angle between the thiophene and pyridine planes is 1.6 (2)°. The pyrimidinone ring forms a dihedral angle of 3.1 (2)° with the pyridine ring. The chloro- and dichloro-phenyl rings form dihedral angles of 75.2 (2) and 85.5 (2)°, respectively, with the pyrimidinone ring. The dihedral angle between the chlorophenyl rings is 69.7 (2)°. The cyclohexene ring adopts a half-chair conformation. There exists a C27—H27A—O1 hydrogen bond between the main molecule and the dichoromethane molecule.

Experimental

The title compound was prepared according to the literature procedure of Liu *et al.* (2006) and suitable crystals were obtained by evaporation of a dichoromethane solution (m.p. 563–565 K). Analysis, calculated for C₂₇H₂₀Cl₅N₃O₂S: C 51.66, H 3.31, N 6.69%; found: C 51.71, H 3.40, N 6.78%. IR (KBr, v, cm⁻¹): 3125(Ph—H), 2931,2863(C—H), 1705(C=O), 1620, 1562, 1517, 1490, 1365, 1252, 1092, 843. ¹H NMR(CDCl₃, TMS, 400 MHz): 1.62–1.80(m, 4H, 2CH₂), 2.34–2.79(m, 4H, 2CH₂), 3.03(s, 3H, CH₃), 7.15–7.58(m, 7H, Ar—H). MS(EI, %): 544 (100), 543(*M*⁺ 90), 396 (16), 380 (20).

Refinement

The dichloromethane molecule is disordered over two positions, with refined occupancies of 0.775 (6) and 0.225 (6). The disorder was modelled with a C—Cl distance restraint of 1.732 (9) Å, and the Cl…Cl distance in both disorder components were restrained to be equal. The displacement parameters of disordered atoms were restrained to an approximate isotropic

behaviour. H atoms were placed in geometrically idealized positions (C—H = 0.93–0.97 Å) and constrained to ride on their parent atoms, with $U_{iso}(H) = kU_{eq}(C)$ (k=1.5 for methyl and 1.2 for the other C atoms).

Figures

Fig. 1. The molecular structure of the title compound, showing 50% probablity displacement ellipsoids.

3-(4-Chlorophenyl)-2-(2,4-dichlorophenoxy)-5-methyl-8,9,10,11-tetrahydro- 2benzothieno[2',3':2,3]pyrido[4,5-*d*]pyrimidin-4(3*H*)-one dichloromethane solvate

$F_{000} = 2560$
$D_{\rm x} = 1.495 {\rm Mg m}^{-3}$
Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Cell parameters from 3031 reflections
$\theta = 2.2 - 19.0^{\circ}$
$\mu = 0.63 \text{ mm}^{-1}$
T = 292 (2) K
Block, colourless
$0.20\times0.16\times0.12~mm$

Data collection

Bruker SMART APEX CCD area-detector diffractometer	5488 independent reflections
Radiation source: fine-focus sealed tube	3296 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.079$
T = 292(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -21 \rightarrow 22$
$T_{\min} = 0.885, T_{\max} = 0.929$	$k = -13 \rightarrow 13$
29034 measured reflections	$l = -22 \rightarrow 34$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.078$	H-atom parameters constrained

$wR(F^2) = 0.234$	$w = 1/[\sigma^2(F_o^2) + (0.1242P)^2 + 1.4543P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\text{max}} = 0.001$
5488 reflections	$\Delta \rho_{max} = 0.64 \text{ e } \text{\AA}^{-3}$
372 parameters	$\Delta \rho_{min} = -0.52 \text{ e } \text{\AA}^{-3}$
41 restraints	Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
S1	0.21511 (7)	0.80443 (11)	0.23989 (5)	0.0657 (4)	
01	0.3537 (2)	0.4856 (4)	0.05713 (12)	0.0791 (11)	
02	0.49710 (15)	0.3654 (3)	0.17882 (10)	0.0512 (7)	
N1	0.2325 (2)	0.7211 (4)	0.15028 (16)	0.0623 (11)	
N2	0.42421 (19)	0.4285 (3)	0.11922 (12)	0.0476 (9)	
N3	0.40778 (18)	0.5042 (3)	0.19699 (11)	0.0427 (8)	
Cl1	0.60808 (11)	0.10969 (19)	-0.00222 (6)	0.1144 (7)	
Cl2	0.61639 (11)	0.41703 (16)	0.37059 (5)	0.1062 (7)	
C13	0.61136 (8)	0.55092 (12)	0.18665 (5)	0.0791 (5)	
C1	0.3714 (2)	0.5894 (4)	0.29686 (16)	0.0510 (11)	
H1A	0.4207	0.6198	0.2920	0.061*	
H1B	0.3707	0.5026	0.2886	0.061*	
C2	0.3508 (3)	0.6043 (5)	0.34868 (18)	0.0732 (15)	
H2A	0.3103	0.5496	0.3556	0.088*	
H2B	0.3918	0.5785	0.3681	0.088*	
C3	0.3304 (3)	0.7282 (5)	0.3624 (2)	0.0808 (16)	
НЗА	0.3719	0.7825	0.3578	0.097*	
H3B	0.3182	0.7289	0.3960	0.097*	
C4	0.2656 (3)	0.7775 (5)	0.33410 (19)	0.0667 (13)	
H4A	0.2205	0.7449	0.3472	0.080*	
H4B	0.2640	0.8666	0.3366	0.080*	
C5	0.2719 (2)	0.7413 (4)	0.28293 (17)	0.0541 (11)	
C6	0.3202 (2)	0.6575 (3)	0.26505 (16)	0.0460 (10)	
C7	0.3112 (2)	0.6435 (4)	0.21415 (15)	0.0447 (10)	

C8	0.2551 (2)	0.7161 (4)	().19556 (17)	0.0536 (11)	
C9	0.2674 (2)	0.6507 (5)	(0.11937 (17)	0.0609 (13)	
C10	0.3273 (2)	0.5734 (4)	().13337 (15)	0.0494 (11)	
C11	0.2414 (3)	0.6608 (7)	(0.06876 (19)	0.0904 (19)	
H11A	0.2814	0.6845	(0.0487	0.136*	
H11B	0.2035	0.7217	(0.0668	0.136*	
H11C	0.2226	0.5826	(0.0585	0.136*	
C12	0.3655 (2)	0.4967 (4)	(0.09934 (17)	0.0559 (11)	
C13	0.3492 (2)	0.5717 (3)	(0.18081 (14)	0.0423 (10)	
C14	0.4672 (2)	0.3507 (4)	(0.08798 (15)	0.0507 (11)	
C15	0.4589 (3)	0.2252 (4)	(0.08967 (17)	0.0594 (12)	
H15	0.4249	0.1902	(0.1102	0.071*	
C16	0.5012 (3)	0.1510 (5)	(0.06094 (18)	0.0699 (14)	
H16	0.4957	0.0658	(0.0616	0.084*	
C17	0.5513 (3)	0.2048 (6)	(0.03150 (18)	0.0717 (15)	
C18	0.5596 (3)	0.3282 (6)	(0.02942 (18)	0.0747 (15)	
H18	0.5939	0.3626	(0.0089	0.090*	
C19	0.5168 (3)	0.4039 (5)	(0.05788 (17)	0.0650 (13)	
H19	0.5218	0.4891	(0.0565	0.078*	
C20	0.4402 (2)	0.4372 (4)	(0.16607 (15)	0.0445 (10)	
C21	0.5227 (2)	0.3813 (4)	(0.22526 (14)	0.0427 (10)	
C22	0.4961 (2)	0.3099 (4)	(0.26109 (16)	0.0540 (11)	
H22	0.4590	0.2534	(0.2553	0.065*	
C23	0.5249 (3)	0.3223 (5)	(0.30592 (17)	0.0631 (13)	
H23	0.5068	0.2749	(0.3309	0.076*	
C24	0.5799 (3)	0.4040 (5)	(0.31384 (17)	0.0627 (13)	
C25	0.6071 (3)	0.4726 (4)	(0.27805 (19)	0.0623 (13)	
H25	0.6455	0.5269	(0.2837	0.075*	
C26	0.5783 (2)	0.4624 (4)	(0.23344 (16)	0.0528 (11)	
C27	0.6539 (11)	0.7036 (15)	(0.0314 (6)	0.249 (11)	0.775 (6)
H27A	0.6307	0.6766	(0.0022	0.298*	0.775 (6)
H27B	0.6912	0.7639	(0.0237	0.298*	0.775 (6)
Cl4	0.5897 (7)	0.7657 (11)	(0.0703 (3)	0.335 (6)	0.775 (6)
C15	0.6906 (2)	0.5827 (6)	(0.06091 (14)	0.211 (3)	0.775 (6)
C27'	0.6306 (10)	0.731 (2)	(0.0331 (7)	0.072 (7)	0.225 (6)
H27C	0.6128	0.7420	().0009	0.086*	0.225 (6)
H27D	0.6482	0.6468	(0.0368	0.086*	0.225 (6)
Cl5'	0.6977 (11)	0.838 (2)	(0.0475 (7)	0.267 (11)	0.225 (6)
Cl4'	0.5647 (6)	0.7663 (8)	(0.0747 (3)	0.085 (3)	0.225 (6)
Atomic displace	nant naramators	(λ^2)				
	rill	22	- 33	12	12	- 23
		U^{22}	U^{ss}	U^{12}	U^{13}	U^{23}
S1	0.0499 (7)	0.0544 (7)	0.0928 (10	0.0157	(6) 0.0065 (6)	0.0087 (6)
01	0.082 (3)	0.109 (3)	0.047 (2)	0.015 ((2) -0.0146 (17)	0.0038 (19)
02	0.0472 (17)	0.0563 (17)	0.0500 (18	3) 0.0139	-0.0046 (13)	-0.0038 (14)
N1	0.044 (2)	0.071 (3)	0.071 (3)	0.0063	(19) -0.001(2)	0.024 (2)

0.0026 (16)

-0.0011 (16)

N2

0.046 (2)

0.053 (2)

0.043 (2)

0.0004 (16)

N3	0.0421 (19)	0.0427 (18)	0.043 (2)	0.0042 (15)	-0.0007 (15)	0.0063 (16)
Cl1	0.1140 (14)	0.1339 (15)	0.0954 (13)	0.0158 (11)	0.0231 (10)	-0.0474 (11)
Cl2	0.1456 (16)	0.1045 (12)	0.0685 (10)	0.0484 (11)	-0.0462 (9)	-0.0280 (8)
C13	0.0886 (10)	0.0617 (8)	0.0870 (10)	-0.0128 (7)	0.0238 (7)	0.0028 (7)
C1	0.050(2)	0.043 (2)	0.061 (3)	0.0013 (19)	-0.004 (2)	-0.001 (2)
C2	0.089 (4)	0.072 (3)	0.059 (3)	0.007 (3)	-0.006 (3)	0.002 (3)
C3	0.084 (4)	0.089 (4)	0.069 (4)	0.000 (3)	0.007 (3)	-0.018 (3)
C4	0.057 (3)	0.057 (3)	0.085 (4)	0.002 (2)	0.009 (3)	-0.012 (3)
C5	0.050 (3)	0.048 (2)	0.064 (3)	-0.004 (2)	0.009 (2)	0.003 (2)
C6	0.038 (2)	0.033 (2)	0.067 (3)	-0.0028 (17)	0.0056 (19)	0.0030 (19)
C7	0.033 (2)	0.043 (2)	0.058 (3)	-0.0026 (18)	0.0029 (18)	0.014 (2)
C8	0.042 (2)	0.048 (2)	0.071 (3)	-0.0013 (19)	0.005 (2)	0.017 (2)
С9	0.045 (3)	0.075 (3)	0.062 (3)	0.001 (2)	-0.006 (2)	0.023 (3)
C10	0.041 (2)	0.055 (3)	0.052 (3)	-0.001 (2)	-0.0029 (19)	0.015 (2)
C11	0.064 (3)	0.138 (5)	0.070 (4)	0.026 (4)	-0.014 (3)	0.030 (3)
C12	0.048 (3)	0.067 (3)	0.052 (3)	-0.004 (2)	-0.003 (2)	0.016 (2)
C13	0.037 (2)	0.039 (2)	0.051 (3)	-0.0041 (17)	-0.0036 (18)	0.0141 (18)
C14	0.048 (3)	0.062 (3)	0.042 (2)	-0.006 (2)	-0.0007 (19)	-0.001 (2)
C15	0.061 (3)	0.060 (3)	0.058 (3)	-0.013 (2)	0.004 (2)	-0.002 (2)
C16	0.070 (3)	0.071 (3)	0.069 (3)	-0.009 (3)	-0.002 (3)	-0.018 (3)
C17	0.070 (3)	0.091 (4)	0.053 (3)	0.000 (3)	0.000 (3)	-0.025 (3)
C18	0.069 (3)	0.102 (5)	0.053 (3)	-0.001 (3)	0.018 (3)	-0.003 (3)
C19	0.071 (3)	0.064 (3)	0.060 (3)	-0.007 (3)	0.013 (3)	0.004 (2)
C20	0.041 (2)	0.044 (2)	0.049 (3)	-0.0026 (19)	-0.0001 (19)	0.005 (2)
C21	0.043 (2)	0.043 (2)	0.042 (2)	0.0144 (19)	-0.0028 (18)	-0.0020 (18)
C22	0.050 (3)	0.053 (3)	0.058 (3)	0.008 (2)	-0.001 (2)	0.004 (2)
C23	0.078 (3)	0.059 (3)	0.053 (3)	0.019 (3)	0.004 (2)	0.011 (2)
C24	0.077 (3)	0.057 (3)	0.055 (3)	0.027 (3)	-0.017 (3)	-0.015 (2)
C25	0.057 (3)	0.055 (3)	0.075 (4)	0.007 (2)	-0.012 (3)	-0.014 (3)
C26	0.050 (3)	0.045 (2)	0.064 (3)	0.007 (2)	0.008 (2)	-0.004 (2)
C27	0.278 (14)	0.259 (13)	0.208 (13)	-0.023 (10)	0.037 (10)	0.018 (9)
Cl4	0.387 (12)	0.353 (10)	0.266 (8)	0.012 (9)	-0.060 (8)	-0.009 (8)
C15	0.132 (3)	0.355 (7)	0.148 (3)	-0.034 (3)	-0.025 (2)	-0.082 (4)
C27'	0.070 (10)	0.098 (11)	0.047 (9)	-0.004 (8)	0.040 (8)	-0.002 (8)
C15'	0.300 (19)	0.288 (18)	0.213 (15)	-0.001 (15)	-0.024 (13)	0.008 (13)
Cl4'	0.127 (6)	0.092 (5)	0.037 (4)	0.006 (4)	0.029 (4)	-0.001 (3)

Geometric parameters (Å, °)

1.733 (5)	C9—C11	1.504 (7)
1.735 (5)	C10—C13	1.392 (6)
1.211 (5)	C10-C12	1.447 (7)
1.349 (5)	C11—H11A	0.96
1.397 (5)	C11—H11B	0.96
1.321 (6)	C11—H11C	0.96
1.338 (6)	C14—C19	1.369 (6)
1.352 (5)	C14—C15	1.372 (6)
1.419 (6)	C15—C16	1.377 (7)
1.449 (5)	C15—H15	0.93
	1.733 (5) 1.735 (5) 1.211 (5) 1.349 (5) 1.397 (5) 1.321 (6) 1.338 (6) 1.352 (5) 1.419 (6) 1.449 (5)	1.733 (5) C9—C11 1.735 (5) C10—C13 1.211 (5) C10—C12 1.349 (5) C11—H11A 1.397 (5) C11—H11B 1.321 (6) C11—H11C 1.338 (6) C14—C19 1.352 (5) C15—C16 1.419 (6) C15—H15

N3—C20	1.279 (5)	C16—C17	1.367 (8)
N3—C13	1.375 (5)	C16—H16	0.93
Cl1—C17	1.744 (5)	C17—C18	1.349 (8)
Cl2—C24	1.735 (5)	C18—C19	1.387 (7)
Cl3—C26	1.737 (5)	C18—H18	0.93
C1—C6	1.490 (6)	С19—Н19	0.93
C1—C2	1.513 (7)	C21—C22	1.360 (6)
C1—H1A	0.97	C21—C26	1.364 (6)
C1—H1B	0.97	C22—C23	1.372 (6)
C2—C3	1.447 (7)	C22—H22	0.93
C2—H2A	0.97	C23—C24	1.358 (7)
C2—H2B	0.97	С23—Н23	0.93
C3—C4	1.525 (7)	C24—C25	1.347 (7)
С3—НЗА	0.97	C25—C26	1.364 (6)
С3—Н3В	0.97	С25—Н25	0.93
C4—C5	1.495 (7)	C27—C15	1.691 (9)
C4—H4A	0.97	C27—Cl4	1.739 (9)
C4—H4B	0.97	С27—Н27А	0.97
C5—C6	1.364 (6)	С27—Н27В	0.97
C6—C7	1.448 (6)	C27'—Cl4'	1.724 (9)
С7—С8	1.396 (6)	C27'—C15'	1.740 (9)
С7—С13	1.403 (6)	С27'—Н27С	0.97
C9—C10	1.435 (6)	C27'—H27D	0.97
C8—S1—C5	91.7 (2)	O1—C12—C10	128.2 (4)
C20—O2—C21	115.8 (3)	N2-C12-C10	113.9 (4)
C9—N1—C8	116.9 (4)	N3—C13—C10	123.2 (4)
C20—N2—C12	120.7 (4)	N3—C13—C7	117.5 (4)
C20—N2—C14	120.9 (3)	C10—C13—C7	119.3 (4)
C12—N2—C14	118.4 (4)	C19—C14—C15	120.8 (4)
C20—N3—C13	116.1 (3)	C19—C14—N2	119.3 (4)
C6—C1—C2	111.6 (4)	C15—C14—N2	119.8 (4)
C6—C1—H1A	109.3	C14—C15—C16	119.9 (5)
C2—C1—H1A	109.3	C14—C15—H15	120.0
C6—C1—H1B	109.3	C16—C15—H15	120.0
C2—C1—H1B	109.3	C17—C16—C15	118.8 (5)
H1A—C1—H1B	108.0	C17—C16—H16	120.6
C3—C2—C1	114.9 (4)	C15—C16—H16	120.6
С3—С2—Н2А	108.6	C18—C17—C16	121.7 (5)
C1—C2—H2A	108.5	C18—C17—Cl1	119.8 (4)
C3—C2—H2B	108.5	C16—C17—C11	118.4 (5)
C1—C2—H2B	108.5	C17—C18—C19	119.9 (5)
H2A—C2—H2B	107.5	C17—C18—H18	120.0
C2—C3—C4	112.8 (5)	C19—C18—H18	120.0
С2—С3—НЗА	109.0	C14—C19—C18	118.8 (5)
C4—C3—H3A	109.0	C14—C19—H19	120.6
C2—C3—H3B	109.0	C18—C19—H19	120.6
C4—C3—H3B	109.0	N3—C20—O2	120.4 (4)
H3A—C3—H3B	107.8	N3—C20—N2	126.9 (4)
C5—C4—C3	110.5 (4)	O2—C20—N2	112.6 (4)

C5—C4—H4A	109.6	C22—C21—C26	120.6 (4)
C3—C4—H4A	109.6	C22—C21—O2	120.1 (4)
C5—C4—H4B	109.6	C26—C21—O2	119.2 (4)
C3—C4—H4B	109.6	C21—C22—C23	119.1 (5)
H4A—C4—H4B	108.1	C21—C22—H22	120.4
C6—C5—C4	125.4 (4)	C23—C22—H22	120.4
C6—C5—S1	113.2 (4)	C24—C23—C22	119.9 (5)
C4—C5—S1	121.4 (3)	С24—С23—Н23	120.0
C5—C6—C7	111.1 (4)	С22—С23—Н23	120.0
C5—C6—C1	121.1 (4)	C25—C24—C23	120.8 (5)
C7—C6—C1	127.7 (4)	C25—C24—C12	119.9 (4)
C8—C7—C13	115.4 (4)	C23—C24—Cl2	119.3 (4)
C8—C7—C6	113.2 (4)	C24—C25—C26	119.8 (5)
C13—C7—C6	131.4 (4)	C24—C25—H25	120.1
N1—C8—C7	127.2 (4)	C26—C25—H25	120.1
N1—C8—S1	122.1 (3)	C21—C26—C25	119.7 (4)
C7—C8—S1	110.7 (4)	C21—C26—Cl3	119.2 (4)
N1—C9—C10	121.8 (4)	C25—C26—C13	121.0 (4)
N1—C9—C11	115.3 (4)	Cl5—C27—Cl4	105.1 (9)
C10—C9—C11	122.9 (5)	Cl5—C27—H27A	110.7
C13—C10—C9	119.3 (4)	Cl4—C27—H27A	110.7
C13—C10—C12	119.1 (4)	Cl5—C27—H27B	110.7
C9—C10—C12	121.6 (4)	Cl4—C27—H27B	110.7
C9—C11—H11A	109.5	H27A—C27—H27B	108.8
C9—C11—H11B	109.5	Cl4'—C27'—Cl5'	100.7 (10)
H11A—C11—H11B	109.5	Cl4'—C27'—H27C	111.6
С9—С11—Н11С	109.5	Cl5'—C27'—H27C	111.6
H11A—C11—H11C	109.5	Cl4'—C27'—H27D	111.6
H11B—C11—H11C	109.5	Cl5'—C27'—H27D	111.6
O1—C12—N2	117.9 (4)	H27C—C27'—H27D	109.4
C6—C1—C2—C3	-43.0 (6)	C9—C10—C13—C7	1.3 (6)
C1—C2—C3—C4	58.8 (7)	C12-C10-C13-C7	-178.4 (4)
C2—C3—C4—C5	-40.6 (6)	C8—C7—C13—N3	176.2 (3)
C3—C4—C5—C6	11.5 (7)	C6—C7—C13—N3	-3.0 (6)
C3—C4—C5—S1	-169.1 (4)	C8—C7—C13—C10	-2.5 (5)
C8—S1—C5—C6	0.8 (3)	C6—C7—C13—C10	178.3 (4)
C8—S1—C5—C4	-178.7 (4)	C20—N2—C14—C19	-103.7 (5)
C4—C5—C6—C7	179.5 (4)	C12—N2—C14—C19	75.4 (5)
S1—C5—C6—C7	0.1 (4)	C20—N2—C14—C15	74.8 (5)
C4—C5—C6—C1	2.1 (7)	C12—N2—C14—C15	-106.1 (5)
S1—C5—C6—C1	-177.4 (3)	C19—C14—C15—C16	0.2 (7)
C2—C1—C6—C5	12.5 (6)	N2-C14-C15-C16	-178.2 (4)
C2C1C6C7	-164.5 (4)	C14—C15—C16—C17	0.7 (7)
C5—C6—C7—C8	-1.2 (5)	C15—C16—C17—C18	-1.0 (8)
C1—C6—C7—C8	176.1 (4)	C15—C16—C17—Cl1	176.4 (4)
C5—C6—C7—C13	178.1 (4)	C16—C17—C18—C19	0.4 (9)
C1—C6—C7—C13	-4.7 (7)	Cl1—C17—C18—C19	-177.0 (4)
C9—N1—C8—C7	-0.7 (7)	C15—C14—C19—C18	-0.8 (7)
C9—N1—C8—S1	179.3 (3)	N2-C14-C19-C18	177.6 (4)

C13—C7—C8—N1	2.3 (6)	C17—C18—C19—C14	0.5 (8)
C6—C7—C8—N1	-178.3 (4)	C13—N3—C20—O2	-178.3 (3)
C13—C7—C8—S1	-177.6 (3)	C13—N3—C20—N2	1.9 (6)
C6—C7—C8—S1	1.7 (4)	C21—O2—C20—N3	-7.7 (5)
C5—S1—C8—N1	178.6 (4)	C21—O2—C20—N2	172.2 (3)
C5—S1—C8—C7	-1.4 (3)	C12—N2—C20—N3	-0.7 (6)
C8—N1—C9—C10	-0.7 (7)	C14—N2—C20—N3	178.3 (4)
C8—N1—C9—C11	-178.9 (4)	C12—N2—C20—O2	179.5 (3)
N1—C9—C10—C13	0.4 (7)	C14—N2—C20—O2	-1.5 (5)
C11—C9—C10—C13	178.4 (5)	C20—O2—C21—C22	92.4 (4)
N1-C9-C10-C12	-179.9 (4)	C20—O2—C21—C26	-92.6 (4)
C11-C9-C10-C12	-1.8 (7)	C26—C21—C22—C23	1.4 (6)
C20—N2—C12—O1	179.8 (4)	O2—C21—C22—C23	176.4 (4)
C14—N2—C12—O1	0.7 (6)	C21—C22—C23—C24	-0.9 (7)
C20-N2-C12-C10	0.5 (6)	C22—C23—C24—C25	-0.5 (7)
C14—N2—C12—C10	-178.6 (4)	C22—C23—C24—C12	-179.2 (3)
C13-C10-C12-O1	179.3 (5)	C23—C24—C25—C26	1.5 (7)
C9—C10—C12—O1	-0.4 (8)	Cl2—C24—C25—C26	-179.9 (3)
C13-C10-C12-N2	-1.6 (6)	C22—C21—C26—C25	-0.5 (6)
C9—C10—C12—N2	178.7 (4)	O2—C21—C26—C25	-175.6 (4)
C20-N3-C13-C10	-3.0 (6)	C22-C21-C26-Cl3	179.4 (3)
C20—N3—C13—C7	178.3 (3)	O2-C21-C26-Cl3	4.4 (5)
C9—C10—C13—N3	-177.3 (4)	C24—C25—C26—C21	-0.9 (7)
C12—C10—C13—N3	2.9 (6)	C24—C25—C26—C13	179.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C27—H27A···O1 ⁱ	0.97	2.44	3.23 (2)	138
Symmetry codes: (i) $-x+1$, $-y+1$, $-z$.				

Fig. 1